If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2-10=102
We move all terms to the left:
7r^2-10-(102)=0
We add all the numbers together, and all the variables
7r^2-112=0
a = 7; b = 0; c = -112;
Δ = b2-4ac
Δ = 02-4·7·(-112)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*7}=\frac{-56}{14} =-4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*7}=\frac{56}{14} =4 $
| 7d=140 | | q-67=748 | | 5x+6-2x-2=10x+2 | | 10+6x=(1+x) | | m-81=400 | | 3x-6=2(x+1)-3 | | n/25=26 | | g+335=447 | | n2-n+48=0 | | v-835=95 | | 12r(r-10)=0 | | 8m^2-10=62 | | 9n=900 | | m/12=28 | | 6-2x+4=3x-4+(-3x) | | 6-2+4=3x-4+(-3x) | | j/12=10 | | j-301=244 | | 4(1+3n)=-26+6n | | 359=s+220 | | f-309=70 | | h+747=834 | | k/22=7 | | 8.8u+2.1=2.3u-16.1 | | 18=f/24 | | 5–x+2∙x=8;3 | | 13=t+2.1* | | t/9=21 | | 27z=162 | | 7=c/7 | | u+9=68 | | 4x-4=-9+4x |